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ABSTRACT

A method is described to computationally simulate probabilistic buckling behavior of multi-
layered composite shells. The simulation accounts for all naturally-occurring uncertainties
including those in constituent (fiber/matrix) material properties, fabrication variables and
structure geometry. The method is demonstrated for probabilistically assessing the buckling
survivability of a specific case of a stiffened composite cylindrical shell with and without
cutouts. The sensitivities of various uncertain variables on the buckling survivability are
evaluated at specified reliability. The results show that the buckling survivability for a shell
without cutouts depends primarily on shell skin related uncertainties. However, stringer related

uncertainties become important for a shell with cutouts.
1. INTRODUCTION

Composite shells are used widely in aerospace structural applications. However, significant
scatter has been observed in numerous variables associated with composite materials from which
these shells are made and with shell geometry/boundary (attachment or support) conditions. As
a consequence, the buckling strength of composite shells is difficult to quantify. In order to
account for the various uncertainties and to satisfy the design requirements, knockdown (safety)
factors are used extensively. These knockdown factors significantly reduce the design load of
composite shells which result in substantial weight increase, but without a quantifiable measure
of their reliability.



An alternative design approach which reliably quantifies the buckling strength of composite
shells in the presence of uncertainties is probabilistic simulation. The objective of this paper is
to describe the probabilistic method and to demonstrate its effectiveness by select composite shell

buckling examples.
2. FUNDAMENTAL PROBABILISTIC BUCKLING APPROACH

The proposed approach for the probabilistic assessment of composite shell buckling is based on
(1) identifying all possible uncertain variables (called primitive variables), (2) assigning a
probabilistic distribution function for each primitive variable, (3) processing all primitive
variables through micro-, macro- composite mechanics and laminate theories, finite element
methods and probability algorithms, and (4) ektracting useful buckling information from the
output of the analyzer and checking against probabilistic design criteria.

The uncertain variables in a composite shell structure can come from different composite scales.
At the constituent scale, material properties for the fiber and matrix and fiber misalignment are
the major sources of uncertainties. At all stages of the fabrication process, the fabrication
variables such as fiber volume ratio, void volume ratio, ply misalignment angle and ply thickness
show considerable scatter. At the structure scale, the variation of the geometry during the
assembly stage, the uncertain boundary conditions and random thermal-mechanical loads, all
have significant contribution to the scatter in the composite structural response.

Formal methodology to quantify the scatter in composite structural responses and to assess the
composite structural design, progressively propagating all uncertainties including fabrication
variables from lower composite scales (constituents) to those at higher composite scales (ply,
laminate, structural) was developed as shown in Figure (1). This methodology, integrating
micro-, macro-, composite mechanics and laminate theories, finite element methods and
probability algorithms, was implemented in the computer code IPACS (Integrated Probabilistic
Assessment of Composite Structures) (ref. 1). Since special probability theories (ref. 2) are used
instead of the conventional Monte Carlo simulation, tremendous computational efficiency can
be gained. Therefore, a probabilistic composite structural analysis becomes feasible which can
not be done traditionally, especially for composite shells which have a lot of uncertainty

variables.



In the following, the buckling survival probability under applied loads for a cylindrical shell with
various cutouts is obtained. Also, sensitivity factors which indicate the relative contribution

among the uncertain variables to this probability are determined.

3. DEMONSTRATION FOR PROBABILISTIC ASSESSMENT OF STIFFENED
COMPOSITE SHELL BUCKLING

3.1 Composite Shell Geometry, Configuration, Loading, Uncertainties, and Modelling

Thin composite stiffened cylindrical shells without cutouts and with cutouts of various sizes,
shown in Figures 2 (a) to (c), are probabilistically assessed for buckling strength. The shell
structure consists of a composite skin, five composite horizontal circumferential frames and eight
composite vertical stringers. The laminate configurations for skin, frames and stringers are
[+45/0,/+45/0,/+45/0/90],, [0,,] and [0,,] respectively. The shell is free at the top end and
its bottom end support is modeled by a set of translational and torsional spring constants. The
shell is subjected to axial, lateral and torsional loads at its free end as also shown in Figures 2.

The shell skin, horizontal frames, and vertical stringers are modelled by 1258 nodes (6 dof per
node) and 1208 four-noded shell elements. The primitive variables include material properties
for graphite fiber and material properties for the epoxy matrix of skin, frames and stringers at
the constituent scale. The fabrication variables include the fiber volume ratio, the void volume
ratio, the ply orientation, and the ply thickness. At structural scale, support spring constants are
assigned a probability distribution to reflect the real-life attachments and the circumferential
frame spacing are also assumed to be uncertain to reflect the uncertainty from the manufacturing
process. Their respective probability distribution type and associated parameters (mean and
scatter) are listed in Table 1.

3.2 Composite Shell Probabilistic Buckling Results
Three cases of cylindrical shell, namely, (a) without cutout, (b) with uniform cutouts and (c)
with uniform cutouts and an access port, as shown in Figure (2), are assessed for their respective

probability of buckling survivability under applied load.

3.2.1 Cylindrical shell without cutouts
Figures (3a) to (3c) show the mean buckling mode shapes for the first three buckling modes of



the shell without cutouts. All three modes are the combination of skin and stringer buckling as
indicated. Figure (3d) shows the buckling survival probability under applied loads. For a given
applied load, for example, the reference load, the reliability against buckling for the first three
buckling modes can be readily found from this figure as 0.85, 0.96 and 0.99 respectively. The
sensitivity factors at the 0.999 reliability level shown in Figures (4a) to (4c) indicate that the
sensitivity factors (ref. 2) for the fiber modulus, the fiber volume ratio and the laminate
thickness of the skin are significantly higher than those for stringers. This type of information
is useful for the design decision making process. For example, if the design reliability against
buckling instability is not acceptable, a redesign is required. From the sensitivity analysis, it
is found that the reliability can be improved much more by enhancing the quality of the skin
related uncertainties rather than enhancing the quality of the stringer related uncertainties.

3.2.2 Cylindrical shell with uniform cutouts

The first three buckling mode shapes are shown in Figures (5a) to (5¢). In this case, the skin
is buckled around the cutouts while the entire skin buckled in the case without cutouts. Also,
for the same applied load, the buckling survival probability is significantly lower for the shell
with uniform cutouts (Figure (5d)) than that for shell without cutouts (Figure (3d)). The
sensitivity results in Figures (6a) to (6c) show that in the presence of uniform cutouts, the
buckling survivability is sensitive to both the skin and stringer related variables.

3.2.3 Cylindrical shell with uniform cutouts and an access port

The access port is a cutout between the circumferential frames and vertical stringers. Therefore,
one of the local skin buckling modes in the previous case is eliminated. The mean buckling
mode shapes are shown in Figures (7a) to (7c). Similar to the case for uniform cutouts only,
the skin is buckled around the uniform cutouts. It is noticed that the buckling survival
probability under applied loads for the first mode (Figure (7d)) increases compared with that for
the case with uniform cutouts only (Figure (5d)) because part of the local skin instability is
eliminated. However, due to this access port, more load is taken by the stringers which results
in an early buckling and the reduction of the buckling survival probability for second and third
mode. The sensitivity factors (in Figure (8a) to (8¢c)) show that the contribution to the failure
probability by the stringer related uncertainties can not be ignored.

4. CONCLUSIONS



A formal methodology is described for the probabilistic assessment of buckling of composite
shells. This methodology integrates micro and macro composite mechanics, laminate theory,
structural mechanics (finite element methods), and probability algorithms to perform a
probabilistic assessment of composite structural design accounting for uncertainties in all
requisite variables at all composite scales. Buckling of a typical composite shell with various
cutouts was assessed probabilistically. For the demonstration case studied herein, it is found that
the skin-related uncertain variables dominate the buckling survival probability under applied
loads for the shell without cutouts. The stringer-related uncertain variables become important
in the presence of cutouts. The access port, bounded by stringers, shows higher survival
probability under applied loads than the shell with uniform cutouts which are not bounded by

stringers.
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6. SYMBOLS

E,, : fiber modulus in longitudinal direction
E,, : fiber modulus in transverse direction
Gq, : in-plane fiber shear modulus

Gp; . out-of-plane fiber shear modulus

Vo : in-plane fiber Poisson’s ratio

vps . out-of-plane fiber Poisson’s ratio
E, : matrix elastic modulus

G, : matrix shear modulus

Vm : matrix Poisson’s ratio



FVR : fiber volume ratio
stdv  : standard deviation
COV : Coefficient Of Variation

Table 1. Statistics for Uncertainties

Uncertain Distribution = Mean Cov

Variables Type (%Mean)
fiber Eq; (Msi) Normal 31.0 5
properties Eq, (Ms)) Normal 2.0 5

Gp, (Msi) Normal 2.0 5

Gpgs (Msi) Normal 1.0 5

i1z Normal 0.2 5

Vo3 Normal 0.25 5
matrix E, (Msi) Normal 0.5 5
properties G, (Msi) Normal 0.185 5

Vm Normal 0.35 5
fabrication  fiber volume ratio Normal 0.60 5
variables void volume ratio Normal 0.02 5

ply misorientation (degree) Normal 0.00 0.9 (stdv)

skin ply thickness (in) Normal 0.005 5

stringer ply thickness (in)  Normal 0.02 5
structural frame spacing (in) Normal 150.0 2
variables
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